

### COPERTHERM XPS

Thermal insulation made of extruded polystyrene foam coupled with bituminous membrane

#### **DESCRIPTION:**

COPERTHERM XPS is a range of thermal insulation, available in rolls or panels, made by the coupling of extruded polystyrene foam (XPS) with waterproofing bitumen-polymer membranes. The insulating element is formed by single-layer panels consisting of extruded rigid foam of polystyrene, self-extinguishing and waterproof, with rough surface (without extrusion skin). The waterproofing membranes, obtained by distilled bitumen modified with polyolefin-based copolymers, provide excellent adhesion to the thermal insulation and perfect watertightness of joints.

#### **INTENDED USE:**

COPERTHERM XPS is used in all applications in which is required the combination of thermal insulation and waterproofing: allows to quickly insulate and waterproof various types of roofs, also with complex geometry. The pre-coupling with bituminous membranes allows to carry out, in a fast and safe way, the waterproofing above heat-sensitive thermal insulations with reduced installation costs. The versions with "MINERAL" finish membranes, self-protected with slate flakes, are used in the insulation and waterproofing system under tiles or under discontinuous roofs in general.

## AVAILABLE SIZES:

Thickness 30 to 60 mm: COPERTHERM XPS is available in rolls (XPS strips 50 mm wide) and in panels.

Rolls length: thick. 30mm=8 m; thick. 40 mm=6 m; thick. 50 mm=5 m; thick. 60 mm= 4m.

Panels length: 1,2 m (only upon request length 1,8 m and 2,4 m). For thickness over 60 mm, COPERTHERM XPS is available only in panels.

#### AVAILABLE BITUMINOUS MEMBRANE:

- Fiber glass reinforcement: Sintoglass 2.0 kg/m $^2$ , Sintoglass 3.0 kg/m $^2$ , Sintoglass 4.0 kg/m $^2$
- Polyester reinforcement: Sintopol 3.0 kg/m<sup>2</sup>, Sintopol 4.0 kg/m<sup>2</sup>
- Polyester reinforcement, self-protected by means of slate flakes: Sintopol MINERAL 3.5 kg/m $^2$ , Sintopol MINERAL 4.0 kg/m $^2$ , Sintopol MINERAL 4.5 kg/m $^2$

# USE AND APPLICATION:

Subject to the type of substrate and the type of coverage, COPERTHERM XPS is fixed to the substructure according to one of the following ways:

- Hot gluing by means of melted oxidized bitumen;
- Cold application by means of bituminous mastic COPERMAST;
- New thermo-adhesive system by means of special membrane FIBERFLEX STRIP 3 mm: the upper face is covered by adhesive strips that are activated with the heat of the flame (torching);
- Mechanically fastened system properly chosen and designed.

Once installed on to the substrate, it is necessary to align and overlap carefully adjacent rolls or panels of COPERTHERM XPS: at this point it is possible to proceed with sealing of membrane overlaps by means of torching. In a multi-layer system the second layer of waterproofing bituminous membranes will be fully torched upon the sealed overlaps of COPERTHERM XPS.

(page 1 of 2)





#### THERMAL INSULATION PROPERTIES

| PROPERTIES<br>Standard reference EN 13164                          | TEST<br>METHOD           | UNIT                                      | DECLARED VALUES                                            |                                  |       |       |       |       |       |  |
|--------------------------------------------------------------------|--------------------------|-------------------------------------------|------------------------------------------------------------|----------------------------------|-------|-------|-------|-------|-------|--|
| Thickness tolerances                                               | EN 823                   | d <sub>N</sub><br>(mm)                    | Class T2 - Thickness 30 to 140: $\pm$ 1,5 mm               |                                  |       |       |       |       |       |  |
| Thickness                                                          | EN 823                   | d <sub>N</sub><br>(mm)                    | 30                                                         | 40                               | 50    | 60    | 80    | 100   | 120   |  |
| Thermal Conductivity declared (value determined by T medium 10 °C) | EN 12667                 | λ <sub>D</sub><br>W/mK                    | 0,032                                                      | 0,033                            | 0,034 | 0,034 | 0,035 | 0,035 | 0,036 |  |
| Thermal Resistance declared $R_D$                                  | EN 12939                 | $R_D=d/\lambda_D$<br>(m <sup>2</sup> K/W) | 0,94                                                       | 1,21                             | 1,47  | 1,76  | 2,28  | 2,86  | 3,34  |  |
| Compression Strength (determined at 10% of deformation)            | EN 826                   | σ <sub>10</sub> ο σ <sub>m</sub><br>(KPa) | ≥ 250                                                      | Livel: CS (10/Y) 300<br>≥ 300kPa |       |       |       |       |       |  |
| Dimension stability at 70°C, 90% U.R.                              | EN 1604                  | %                                         | Class: DS (TH) Thickness shift < 4% Dimensional shift < 1% |                                  |       |       |       |       |       |  |
| Water absorption<br>(total immersion for 28 days)                  | EN 12087                 | W <sub>lt</sub><br>(%)                    | Livel: WL(T)1,5<br>Absorption ≤1,5%                        |                                  |       |       |       |       |       |  |
| Resistance to water vapour diffusion                               | EN 12086                 | μ (MU)                                    | 100 ÷ 50                                                   |                                  |       |       |       |       |       |  |
| Reaction to fire (foam)                                            | EN 13501-1<br>EN 11925-2 | Euroclas<br>s                             | E                                                          |                                  |       |       |       |       |       |  |

### **BITUMINOUS MEMBRANE PROPERTIES**

| PROPERTIES                                   | TEST<br>METHOD | UNIT   | SINTOGLASS      | SINTOPOL  | SINTOPOL<br>MINERAL | TOL      |
|----------------------------------------------|----------------|--------|-----------------|-----------|---------------------|----------|
| Reference standard                           |                |        | EN 13707        | EN 13707  | EN 13895-1          |          |
| Unit weight                                  | EN 1849-1      | kg/m²  | 2,0 - 3,0 - 4,0 | 3,0 - 4,0 | 3,5 - 4,0 - 4,5     | ±10%     |
| Tensile strength (at break) L/T              | EN 12311-1     | N/5 cm | 300/200         | 400/300   | 400/300             | ±20%     |
| Elongation (at break) L/T                    | EN 12311-1     | %      | 2/2             | 35/35     | 35/35               | ±15      |
| Tear resistance (nail test) L/T              | EN 12310-1     | N      | 70/70           | 130/130   | 130/130             | ±30%     |
| Resistance to static loading                 | EN 12730 (A)   | kg     | NPD             | 10        | 10                  | ≥        |
| Impact resistance                            | EN 12691       | mm     | NPD             | 700       | 700                 | ≥        |
| Dimensional stability                        | EN 1107-1      | %      | NPD             | ±0,3      | ±0,3                | ≤        |
| Flexibility at low temperature               | EN 1109        | °C     | -5              | -5        | -5                  | <b>≤</b> |
| Flow resistance at elevated temperature      | EN 1110        | °C     | 120             | 120       | 120                 | ≥        |
| Watertightness (method A)                    | EN 1928        | kPa    | 60              | 60        | 60                  | ≥        |
| Resistance to water vapour diffusion $(\mu)$ | EN1931         |        | 20.000          | 20.000    | 20.000              |          |
| Reaction to fire                             | EN 13501 -1    | Class  | E               | E         | Е                   |          |
| Thermal conductivity                         | / -/           | W/mK   | 0.2             | 0.2       | 0.2                 |          |





(page 2 of 2)

Issued 01/07/2021 - The technical data given is based on average values obtained during production. COPERNIT reserves the rights to change or modify the nominal values without prior notice or advice.